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Nested case-control studies in occupational cohorts are often 
used to estimate exposure effects when development of de? 
tailed exposure estimates for all cohort members is too costly. 
Duration of exposure, which can act as a surrogate for cumu? 
lative exposure, is often readily available for all cohort mem? 
bers. Langholz and others have recently proposed a method of 
control selection called countermatching, which uses data on 
the surrogate to determine which controls are selected from 
the risk set for a given case. This method may increase preci? 
sion relative to the usual random sampling of the risk set. We 

compare countermatching with random sampling in a nested 
case-control study of silicosis among miners. Data on cumula? 
tive exposure were in fact available for all cohort members, 

enabling estimation of the parameter of interest in the full 
cohort. We conducted nested case-control analyses using 100, 
20, 10, and 3 controls per case using random sampling and 
additional analyses using 3 controls per case with two different 
methods of countermatching. All analyses were replicated 50 
times to explore the statistical properties of the estimated 

exposure parameter. We found that one of the countermatch? 
ing methods markedly increased efficiency compared with ran? 
dom sampling. Countermatching using 3 controls per case 

yielded an approximate 25% increase in relative efficiency 
compared with random sampling; it was approximately equiv- 
alent to random sampling using 10 controls. (Epidemiology 
1997;8:238-242) 
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Occupational nested case-control studies are often con? 
ducted within cohorts to (1) develop detailed estimates 
of exposure for a limited number of cases and their 

controls, or (2) collect additional data on an important 
confounder, such as smoking, for a limited number of 
cases and controls. Often, the cost of obtaining this 
information (detailed exposure estimates or data on a 

confounder) for the entire cohort is prohibitive. 
To obtain an unbiased (or consistent) estimate of the 

exposure effect in the nested case-control study, proper 
control selection is required.1 The usual method of se? 
lection is to sample controls randomly within risk sets 
for each case, defined as the case and all study subjects 
who survived past the time of the case's failure and had 
entered the study before the case's failure. Failure time is 
often measured on the age scale.2 Exposures within the 
risk set are time dependent, and exposures for noncases 
must be truncated, when necessary, at the time, or age, 
of the case's failure. The precision of the estimated effect 
is improved when more controls are chosen per case. 
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Relative efficiency, defined as the ratio of the variance 
of the exposure effect in the full cohort to the variance 
of the exposure effect in the nested case-control study, 
has been shown in the null case (no exposure effect) for 
a dichotomous exposure variable to be (m ? 1 )/m, where 
m represents the number of controls chosen per case.2 
This relative efficiency decreases as the exposure effect 

departs from the null. 

Recently, Langholz and others3-5 have proposed an? 
other method of control sampling for nested case-con? 
trol studies, called countermatching. In one scenario for 

countermatching, some surrogate of the exposure vari? 
able is available on the entire cohort, but exposure itself 
still would be too costly to obtain for the whole cohort. 
An example would be duration of exposure or employ? 
ment as a surrogate for cumulative exposure in an occu? 

pational cohort. Duration of exposure may be available 
for the whole cohort, but reconstruction of exposure 
level (intensity) for each job over time, which is neces? 

sary to derive cumulative exposure, often is not avail? 
able. In this case, countermatching may result in a gain 
in efficiency of the exposure estimate relative to random 

sampling. This is the scenario we consider here. 

Countermatching is somewhat counterintuitive. For 
the scenario we consider, it requires that each case's risk 
set be stratified by the surrogate of exposure and then 
that controls for that risk set be selected from the strata 
other than the case's stratum. For example, if duration of 

exposure were divided into quartiles within a risk set, 
and three controls were to be selected for each case, then 
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three controls would be randomly selected, one each 

from each of the quartiles except the case's quartile. The 

logic of such a selection can perhaps be better under- 
stood in the situation when only one control is chosen 

per case, and exposure is dichotomous. The result of 

countermatching is then to maximize the number of 
discordant pairs; the exposure estimate is derived from 
the proportion of discordant pairs in which the case is 

exposed compared with pairs in which the control is 

exposed. It is well known that, in pair-matched case- 
control studies, no information is obtained from concor? 
dant pairs,1 so the idea of maximizing the number of 
discordant pairs would appear intuitively to increase 

efficiency (precision). The gain in precision will be a 
function of how predictive the surrogate is for the true 

exposure (or how correlated it is with the true exposure, 
for continuous variables). 

Although the above example assumes a single control 
chosen per stratum, this restriction is not necessary, and 
the method is generalizable to a varying number of 

controls; moreover, the strata within a risk set do not 
have to be of the same size. 

The partial likelihood used to estimate the exposure 
effect in countermatching is the same as the usual partial 
likelihood, except that the data in the numerator (the 
case) and denominator (the risk set) are weighted by the 
inverse of the probability that the corresponding sub? 

jects were selected within strata (the case is actually 
chosen with probability of one, but, like a control, it is 

assigned a weight-based size of the stratum from which it 
is selected). 

Using the notation of Langholz and Clayton,3 suppose 
a risk set for a case has n members and is stratified by a 

surrogate of exposure into a number of strata, each with 

n{ subjects (nu n2,... ). From each stratum I, the inves- 

tigator then chooses m{ subjects. If the case is found in 
stratum I, then mi 

? l controls may be chosen from that 

stratum, and m controls may be chosen from all other 
strata. Each risk set contributes a term to the log partial 
likelihood, which has the form 

l?g( fyfor case)/Xisk set^) > 

in which 6 is an exponential function of risk factors 

including exposure. In countermatching, weights are 

assigned, and the term in the log partial likelihood has 
the form 

log( W6({or case)/^case-control set^^) > 

where W = njm{. 
Langholz and Borgan4 have developed the above 

weighted partial likelihood and shown that it provides 
consistent estimates of the parameters and their vari? 
ances and that the standard error of the estimated ex? 

posure parameter is reduced relative to random sampling 
of the risk set. Here, we investigate further the relative 

efficiency of countermatching compared with random 

sampling in nested case-control studies, for the situation 
in which the effect of exposure is measured by the 

regression coefficient for a continuous exposure variable 

(a measure of the exposure-response trend). We have 
used empirical data from a cohort study of gold miners in 
which the outcome of interest was silicosis and the 
variable of interest was cumulative exposure; as a surro? 

gate for cumulative exposure, we used duration of expo? 
sure (years underground). Both of these variables were 
time dependent. The actual value of cumulative expo? 
sure was known for all cohort members from a previously 
developed job-exposure matrix, but, for illustrative pur? 
poses, we can assume that these values were unknown 

except for cases and controls in a nested case-control 

study. 

Methods 

The data used here have been described previously.6 
Briefly, we studied a cohort of 3,300 gold miners who 
had worked underground for at least 1 year between 
1940 and 1965 and who had been exposed to high levels 
of crystalline silica. Complete work histories were avail? 
able for all cohort members. Vital status was traced 

through 1990, and 1,551 deaths were ascertained. Sam? 

pling data for respirable dust existed back as far as 1937 

(respirable dust counts were converted to gravimetric 
measures of silica, assuming that 13% of the dust was 

silica). A job-exposure matrix was created to estimate 
dust levels by job category across time. Levels before 
1937 were estimated on the basis of 1937 levels and 
industrial hygienists' information. Cases of silicosis (N = 

170) were identified by death certificate and via two 
cross-sectional surveys in 1960 and 1976. Prior Poisson 

regression analyses of rates of silicosis indicated a clear 
trend of increased risk with increased cumulative expo? 
sure to silica; risk increased monotonically until the 

highest category, with rate ratios of 1.9, 9.8, 22.0, 54.4, 
234-8, and 216.9 by ascending cumulative exposure cat? 

egory vs the lowest category (the categories were 0 to 

<0.2, 0.2 to <0.5, 0.5 to <1.0,1.0 to <2.0, 2.0 to <3.0, 
3.0 to <4-0, >4.0 mg per m3-years).6 Cumulative expo? 
sure (or the log of cumulative exposure) was a better 

predictor of silicosis risk than either average intensity of 

exposure or simple duration of exposure. Cumulative 

exposure was defined as usual as the sum across all jobs 
of the product of duration in job and exposure level for 
that job. No lag was applied. 

For our purposes, silicosis had the advantage of being 
an outcome that is associated with exposure alone; there 
is no background rate of silicosis in a nonexposed pop? 
ulation. Hence, we chose a simple model of silicosis as a 
function of cumulative exposure without other covari? 
ates. In Cox regression analyses, the log of cumulative 

exposure fit the data better than simple cumulative 

exposure and also appeared to have a generally good fit 
based on inspection of the categorical results; therefore, 
we used the log of cumulative exposure as our exposure 
measure. 

We first conducted Cox regression for the entire co? 
hort to determine the value of the parameter that we 
wished to estimate in a nested case-control approach. 
The time variable for these Cox regression analyses was 
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age, and risk sets consisted of all those who survived past 
the index case's age. Exposures for members of the risk 
set were truncated when individuals reached the age of 

the index case's failure. 
We then randomly sampled controls from the risk 

sets, according to the usual method for nested case- 
control analyses. We chose 50 sets each of random 

samples of 3, 10, 20, and 100 controls. The use of 3 

controls is probably more typical than 10, 20, or 100 for 
case-control analyses in which there is a substantial cost 
for each control, but we used 10, 20, and 100 controls to 
illustrate the gain in precision obtained by using more 
controls with simple random sampling and to have some 
referent points in comparing the relative efficiency of 

countermatching with random sampling. We restricted 
our analyses with countermatching to the more common 
situation of 3 controls per case, again conducting 50 

separate case-control analyses. 
Countermatching in our analysis required stratifica? 

tion of each risk set by some cutpoints of the surrogate 
variable. We used duration as the surrogate; the corre? 
lation between duration and cumulative exposure was 
0.69 in the full cohort. There are a number of possibil- 
ities for choosing these cutpoints.5 We used two meth? 
ods. For method 1, we stratified each risk set by quartiles 
of simple duration of exposure, with these quartiles de? 
termined from all subjects within that risk set. The 

cutpoints for the quartiles varied between risk sets. 
Three controls were chosen for each risk set from the 
strata other than the stratum in which the case was 
found. The use of quartiles within each risk set assured 

equal numbers in each stratum within the risk set. With 
the sampling of one control per stratum, this meant that 
all weights in the partial likelihood were equal and thus 
canceled out (resulting in the usual unweighted likeli? 

hood). This procedure allowed use of standard software 
for analyzing nested case-control studies, without any 
weighting of the likelihood; this was a motivation for the 
use of method 1. We used SAS's PHREG procedure for 

analysis.7 
We also used a second method of countermatching 

(method 2), as suggested by Langholz and Goldstein.5 

Using this method, we chose quartiles of duration based 
on the distribution of duration for the 170 cases. These 

cutpoints were then applied to all risk sets. Because risk 
sets are formed on the basis of age, and age is correlated 
with duration, following the procedure suggested by 
Langholz and Goldstein,5 we first checked to see 
whether these distributions of duration varied by the age 
of the cases by dividing cases into young and old, using 
the median age at failure. Finding that the quartiles for 
duration were approximately equivalent for young and 

old, we used a single set of cutpoints based on these 

quartiles across all risk sets. This procedure resulted in 
stratum sizes which differed across risk sets and therefore 

required the use of weights in the partial likelihood. We 
used SAS's PHREG procedure, which, in newer versions 
of SAS (version 6.10 and above), allows for an offset, by 
which we incorporated the weights. By way of example, 
suppose stratification of a risk set using the quartiles of 

distribution of all cases' duration of exposure led to 
stratum sizes of 100, 80, 60, and 40, and suppose the case 
was found in the last stratum. One control would be 

sampled from each of the first three strata. The weights 
for the three controls would be 100, 80, and 60, whereas 
the weight for the case would be 40. In SAS PHREG, 
the offset is set to equal to the log of the weight. 

We also reconstructed the data to dampen the marked 
size of the exposure effect to observe differences in 
relative efficiency for the usual random sampling vs the 

countermatching strategy under less "extreme" condi? 
tions (conditions in which the exposure distribution of 
the cases was not so markedly different from that of the 

noncases). This reconstruction was done by re-allocating 
some cases within their risk set from their original quar? 
tile of cumulative exposure to a lower one (quartiles 
based on the distribution of cumulative exposure for all 

subjects in the risk set) and assigning these re-allocated 
cases a new cumulative exposure and new duration. 
These new values were equal to the midpoints of the 
values for quartiles of cumulative exposure and duration, 
with quartiles again calculated for all subjects within 
each risk set. 

The number of cases re-allocated from higher quartile 
to lower quartile was somewhat arbitrary; the goal was to 
obtain a regression coefficient for the log of cumulative 

exposure about half the size of the original coefficient, 
while retaining approximately the shape of the original 
exposure-response (increasing monotonically until tail- 

ing downward at the last point in a categorical analysis). 
The numbers of cases falling within quartiles 1-4 of 
cumulative exposure, based on distribution of cumula? 
tive exposure within each risk set, were originally 3, 10, 
26, and 131, respectively. After re-allocation, 5, 19, 69, 
and 77 cases fell into quartiles 1-4 of cumulative expo? 
sure with their risk sets, which succeeded in decreasing 
the exposure effect by about half. 

For all case-control analyses, across the 50 analyses, 
we calculated (1) the average point estimate of effect, 
(2) the average standard error of that point estimate, and 

(3) the average likelihood ratio test for the exposure 
variable. 

We compared different case-control analyses by cal? 

culating the average relative efficiency for each. The 

average relative efficiency was calculated by dividing the 
variance of the estimated parameter for log cumulative 

exposure from the cohort study by the average variance 

TABLE 1. Results for the Full Cohort Analysis (Cox Re? 
gression) 

Parameter Likelihood 
Exposure Variable (Standard Error) Wald Test Ratio Test 

Original dataset 
Log cumulative 1.5557(0.1100) 199.7 344.3 

exposure 

Cases assigned lower exposures to dampen exposure-response 
gradient 

Log cumulative 0.844 (0.0778) 117.7 148.0 
exposure 
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of the estimated parameter for log cumulative exposure 

parameter in the 50 case-control samples. Although the 
estimated exposure parameters in the case-control stud? 

ies are unbiased asymptotically, sampling variation will 

result in some bias for any given estimate, based on 

case-control data. We took this into consideration by 
also calculating a mean squared error, defined as the 

square of the average bias from the full cohort estimated 

parameter plus the average variance of the case-control 

estimated parameter. 

Results 

Table 1 gives the parameter estimates, standard errors, 
and likelihood ratio tests for log cumulative exposure for 

the full cohort using the original data, and also using 
data reconstructed to dampen the exposure-response 

gradient. 
Table 2 shows the results for case-control analyses, 

with the original data. Use of random sampling with 

100, 20, and 10 controls yields estimates almost identical 
to the "true" parameter estimated from the full cohort, 
with increasing average standard error. With 3 controls, 
estimates of the parameter are more unstable. The av? 

erage standard error of random sampling and counter? 

matching method 1 are about the same, indicating no 

gain in relative efficiency. The average standard error of 

countermatching method 2 shows a marked decrease, 
however. 

Table 3 shows the results for case-control analyses 
when some cases have been assigned lower exposures to 
lessen the steep exposure-response gradient. In this sit? 

uation, the distribution of cumulative exposure for the 
cases is not so skewed as the original data, and with 3 

controls, countermatching by method 1 shows some 
decrease in average standard error compared with ran? 
dom sampling. Countermatching by method 2 shows an 
even greater relative decrease in average standard error 

(greater gain in relative efficiency). 
Table 4 shows the relative efficiency for random sam? 

pling vs countermatching for the case-control studies. A 
second statistic, mean squared error, combines the in? 
formation on the efficiency of the estimated parameter 
with the degree of bias from the true parameter. For the 

original data with steep exposure-response, counter? 

matching using method 1 provided no increase in rela? 
tive efficiency but some improvement in mean squared 
error. Countermatching with method 2 was more effec- 

TABLE 2. Case*Control Analyses for Original Data 

* For each row of the table, 50 different sets of controls were selected, and 50 
analyses were conducted. 

TABLE 3. Case*Control Analyses of Reconstructed Data 
with Lower Exposure-Response Gradient 

* For each row of the table, 50 different sets of controls were selected, and 50 
analyses were conducted. 

tive, with a marked gain in relative efficiency compared 
with random sampling (from 50% to 78%), and with a 

corresponding decrease in mean squared error. For the 
derived data with a lower exposure effect, and using 3 

controls, both methods of countermatching showed 

gains in relative efficiency and mean squared error com? 

pared with random sampling, but, again, method 2 was 

notably superior to method 1. For both the original data 
and the derived data with a lower exposure effect, coun? 

termatching using method 2 with 3 controls was approx? 
imately equivalent to random sampling with 10 controls. 

Discussion 

Countermatching can be thought of as one example of a 

family of methods for selection of a subset of controls 

(and possibly cases), called "two-stage" designs. Breslow8 
has recently provided a general discussion of such "two- 

stage" designs, in which an original large number of cases 
and controls is identified at stage 1, and, to reduce costs, 
a subset of them is chosen for more detailed data collec? 
tion at stage 2. Rather than choose the subset at random, 
case and controls may be sampled nonrandomly to in? 
crease the precision of the final estimator of exposure 
effect (for example, when the exposure is rare exposed 
cases and controls might be oversampled). The oversam- 

pling must then be taken into account at the analysis 
stage to obtain unbiased estimates of the exposure effect. 

In countermatching as used here, a surrogate of cu? 
mulative exposure (that is, duration of exposure) is used 
for control selection within risk sets to increase variation 
in exposure between cases and controls, which in turn 
increases the precision of the estimator of exposure ef? 
fect. Controls within risk sets are purposefully selected to 
have different durations of exposure than cases. Appro? 
priate weighting of the likelihood is necessary to account 
for the departure from random sampling, to obtain un? 
biased estimates of exposure effect. The resulting esti? 
mates are more precise than those obtained by random 

sampling. 
In the context of any given study, there is a variety of 

methods by which countermatching can be performed. 
Our data were obtained from an occupational cohort 
that we analyzed using a Cox model, with the formation 
of risk sets for each case, using age as the time variable. 
For countermatching, the risk sets were stratified by 
duration of exposure (our surrogate for cumulative ex- 
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TABLE 4. Relative Efficiency and Mean Squared Error 

(MSE) of Case-Control vs Full Cohort Estimate* 

Design and Number of Controls Relative Efficiency (%) MSE 

Original data 
Random sampling 

100 
20 
10 
3 

Countermatching 1 
3 49.0 0.0256 

Countermatching 2 
3 77.7 0.0184 

Reconstructed data with lower exposure effect 
Random sampling 

100 98.8 0.0061 
20 91.9 0.0066 
10 85.7 0.0071 
3 59.1 0.0103 

Countermatching 1 
3 71.6 0.0085 

Countermatching 2 
3 83.1 0.0077 

* Average relative efficiency = variance full cohort parameter for exposure/ 
average variance case-control parameter for exposure. MSE = square of average 
bias (from full cohort parameter) + average variance of case-control parameter. 

posure), and controls were then selected from strata 
other than the case's stratum. There are a number of 

ways in which the stratification could be carried out. We 
chose to use two methods. Method 1 stratified by quar? 
tiles of duration calculated within each risk set and was 
motivated by its simplicity and the fact that weights 
were not required in the analysis (as all weights were 

equal, because stratum sizes are equal within risk sets). In 
method 2, the cutpoints were chosen on the basis ofthe 

quartiles of distribution of duration for all cases; stratum 
sizes differed within risk sets, and weighting was required 
in the analysis. Although we know of no theoretical 

justification for method 2 vs method 1, there is an 
intuitive one. Because there is an exposure effect, and 
because duration and cumulative exposure are corre? 

lated, the cases' durations (and cumulative exposures) 
will tend to be clustered in the upper end of the distri- 

bution in any given risk set. Because the goal is to 
maximize variation in the exposures of cases vs controls 
in each risk set (achieving more "discordance"), it is best 
to form strata based on the cases' durations rather than 
durations within a risk set (note that under the null 

hypothesis, with no exposure effect, cases are not clus- 

tered, and method 1 and method 2 are equivalent). In 

fact, method 2 did prove to be superior for increasing 
precision, and incorporation of weights into the likeli? 
hood was not a problem using available software. 
Method 1 resulted in some gain in precision over ran? 
dom sampling in the "re-allocated" dataset in which the 

exposure effect was not as strong, so that clustering of 
cases in upper percentiles of duration and exposure dis? 
tributions was not so extreme. 

The gain in precision using countermatching vs ran? 
dom sampling was appreciable. In our data, the use of 

countermatching with 3 controls was equivalent to the 
use of random sampling using 10 controls. In situations 
where the cost of obtaining detailed exposure informa? 
tion for each control is important, countermatching 
would certainly be recommended, 
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